A Single Vesicular Glutamate Transporter Is Sufficient to Fill a Synaptic Vesicle

نویسندگان

  • Richard W. Daniels
  • Catherine A. Collins
  • Kaiyun Chen
  • Maria V. Gelfand
  • David E. Featherstone
  • Aaron DiAntonio
چکیده

Quantal size is the postsynaptic response to the release of a single synaptic vesicle and is determined in part by the amount of transmitter within that vesicle. At glutamatergic synapses, the vesicular glutamate transporter (VGLUT) fills vesicles with glutamate. While elevated VGLUT expression increases quantal size, the minimum number of transporters required to fill a vesicle is unknown. In Drosophila DVGLUT mutants, reduced transporter levels lead to a dose-dependent reduction in the frequency of spontaneous quantal release with no change in quantal size. Quantal frequency is not limited by vesicle number or impaired exocytosis. This suggests that a single functional unit of transporter is both necessary and sufficient to fill a vesicle to completion and that vesicles without DVGLUT are empty. Consistent with the presence of empty vesicles, at dvglut mutant synapses synaptic vesicles are smaller, suggesting that vesicle filling and/or transporter level is an important determinant of vesicle size.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vesicular Monogamy?

Vesicular neurotransmitter transporters package transmitter into the lumen of synaptic vesicles for quantal release. However, the number of transporters that localize to each vesicle is not known. In this issue of Neuron, a study by Daniels et al. using the Drosophila neuromuscular junction and mutations of the vesicular glutamate transporter suggests that one transporter may suffice to fill ea...

متن کامل

Vesicular glutamate transporter expression level affects synaptic vesicle release probability at hippocampal synapses in culture.

The vesicular glutamate transporter (VGLUT) plays an essential role in synaptic transmission by filling vesicles with glutamate. At mammalian synapses, VGLUT expression level determines the amount of glutamate packaged into vesicles, and the specific paralog of VGLUT expressed affects the release probability. In this study, we investigate whether there is a link between the number of VGLUTs on ...

متن کامل

Increased expression of the Drosophila vesicular glutamate transporter leads to excess glutamate release and a compensatory decrease in quantal content.

Quantal size is a fundamental parameter controlling the strength of synaptic transmission. The transmitter content of synaptic vesicles is one mechanism that can affect the physiological response to the release of a single vesicle. At glutamatergic synapses, vesicular glutamate transporters (VGLUTs) are responsible for filling synaptic vesicles with glutamate. To investigate how VGLUT expressio...

متن کامل

Differential Sorting of the Vesicular Glutamate Transporter 1 into a Defined Vesicular Pool Is Regulated by Light Signaling Involving the Clock Gene Period

Synaptic strength depends on the amount of neurotransmitter stored in synaptic vesicles. The vesicular transmitter content has recently been shown to be directly dependent on the expression levels of vesicular neurotransmitter transporters indicating that the transport capacity of synaptic vesicles is a critical determinant for synaptic efficacy.Using synaptic vesicles prepared fromwhole brain ...

متن کامل

Individual synaptic vesicles from the electroplaque of Torpedo californica, a classic cholinergic synapse, also contain transporters for glutamate and ATP

The type of neurotransmitter secreted by a neuron is a product of the vesicular transporters present on its synaptic vesicle membranes and the available transmitters in the local cytosolic environment where the synaptic vesicles reside. Synaptic vesicles isolated from electroplaques of the marine ray, Torpedo californica, have served as model vesicles for cholinergic neurotransmission. Many lin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 49  شماره 

صفحات  -

تاریخ انتشار 2006